Two Step Equations Variables on Both Sides Worksheet Easy

SOLVING EQUATIONS WITH VARIABLES ON BOTH SIDES WORKSHEET

Question 1 :

Solve for t :

5t - 9  =  -3t + 7

Question 2 :

Solve for n :

3n/4 + 16  =  2 - n/8

Question 3 :

Solve for n :

4(2a - 1) = -10(a - 5)

Question 4 :

Solve for x :

-7x - 3x + 2  =  -8x - 8

Question 5 :

Solve for k :

5(k - 3) - 7(6 - k)  =  24 - 3(8 - k) - 3

Question 6 :

Solve for x :

(x + 15)(x - 3) - (x2 - 6x + 9)  =  30 - 15(x - 1)

Question 7 :

Solve for x :

4x/5 - 7/4  =  x/5 + x/4

Question 8 :

Solve for x :

(x - 2)/2 + (x + 10)/9  =  5

Question 9 :

Solve the following equation :

(1/2)(8y - 6)  =  5y - (y + 3)

Question 10 :

Solve the following equation :

2(1 - x) + 5x  =  3(x + 1)

Detailed Answer Key

Question 1 :

Solve for t :

5t - 9  =  -3t + 7

Solution :

5t - 9  =  -3t + 7

Add 3t to each side.

8t - 9  =  7

Add 9 to each side.

8t  =  16

Divide each side by 8.

t  =  2

Question 2 :

Solve for n :

3n/4 + 16  =  2 - n/8

Solution :

3n/4 + 16  =  2 - n/8

Least common multiple of the denominators (4 and 8) is 8.

Multiply each side by 8 to get rid of the denominators 4 and 8.

8[3n/4 + 16]  =  8[2 - n/8]

Use the distributive property.

8(3n/4) + 8(16)  =  8(2) - 8(n/8)

6n + 128  =  16 - n

Add n to each side.

7n + 128  =  16

Subtract 128 from each side.

7n  =  -112

Divide each side by 7.

n  =  -16

Question 3 :

Solve for n :

4(2a - 1) = -10(a - 5)

Solution :

4(2a - 1) = -10(a - 5)

Use the distributive property.

4(2a) - 4(1)  =  -10(a) - 10(-5)

8a - 4  =  -10a + 50

Add 10a to each side.

18a - 4  =  50

Add 4 to each side.

18a  =  54

Divide each side by 18.

a  =  3

Question 4 :

Solve for x :

-7x - 3x + 2  =  -8x - 8

Solution :

-7x - 3x + 2  =  -8x - 8

Simplify.

-10x + 2  =  -8x - 8

Add 10x to each side.

2  =  2x - 8

Add 8 to each side.

10  =  2x

Divide each side by 2.

5  =  x

Question 5 :

Solve for k :

5(k - 3) - 7(6 - k)  =  24 - 3(8 - k) - 3

Solution :

5(k - 3) - 7(6 - k)  =  24 - 3(8 - k) - 3

Use distributive property.

5k - 15 - 42 + 7k  =  24 - 24 + 3k - 3

Simplify.

12k - 57  =  3k - 3

Subtract 3k from each side.

9k - 57  =  -3

Add 57 to each side.

9k  =  54

Divide each side by 9.

k  =  6

Question 6 :

Solve for x :

(x + 15)(x - 3) - (x2 - 6x + 9)  =  30 - 15(x - 1)

Solution :

(x + 15)(x - 3) - (x 2  - 6x + 9)  =  30 - 15(x - 1)

Simplify.

x2 + 12x - 45 - x2 + 6x - 9  =  30 - 15x + 15

18x - 54  =  -15x + 45

Add 15x to each side.

33x - 54  =  45

Add 54 to each side.

33x  =  99

Divide each side by 33.

x  =  3

Question 7 :

Solve for x :

4x/5 - 7/4  =  x/5 + x/4

Solution :

4x/5 - 7/4  =  x/5 + x/4

The least common multiple of the denominators (4 and 5) is 20.

Multiply each side by 20 to get rid of the denominators 4 and 8.

20[4x/5 - 7/4]  =  20[x/5 + x/4]

20(4x/5) - 20(7/4)  =  20(x/5) + 20(x/4)

16x - 35  =  4x + 5x

16x - 35  =  9x

Subtract 9x from each side.

7x - 35  =  0

Add 35 to each side.

7x  =  35

Divide each side by 7.

x  =  5

Question 8 :

Solve for x :

(x - 2)/2 + (x + 10)/9  =  5

Solution :

(x - 2)/2 + (x + 10)/9  =  5

The least common multiple of the denominators (2 and 9) is 18.

Multiply each side 18 to get rid of the denominators 2 and 9.

18[(x - 2)/2 + (x + 10)/9]  =  18(5)

18(x - 2)/2 + 18(x + 10)/9  =  90

9(x - 2) + 2(x + 10)  =  90

9x - 18 + 2x + 20  =  90

11x + 2  =  90

Subtract 2 from each side.

11x  =  88

Divide each side by 11.

x  =  8

Question 9 :

Solve the following equation :

(1/2)(8y - 6)  =  5y - (y + 3)

Solution :

(1/2)(8y - 6)  =  5y - (y + 3)

Simplify both sides.

4y - 3  =  5y - y - 3

4y - 3  =  4y - 3

Subtract 4y from each side.

-3  =  -3

The above result is true. Because the result we get at the last step is true, the given equation has infinitely has many solutions.

Question 10 :

Solve the following equation :

2(1 - x) + 5x  =  3(x + 1)

Solution :

2(1 - x) + 5x  =  3(x + 1)

Simplify both sides.

2 - 2x + 5x  =  3x + 3

2 + 3x  =  3x + 3

Subtract 3x from each side.

2  =  3

The above result is false. Because 2 is not equal to 3. Because the result we get at the last step is false, the given equation has no solution.

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Solo Build It!

Kindly mail your feedback tov4formath@gmail.com

We always appreciate your feedback.

© All rights reserved. onlinemath4all.com

burkhartsqualogen.blogspot.com

Source: https://www.onlinemath4all.com/solving-equations-with-variables-on-both-sides-worksheets.html

0 Response to "Two Step Equations Variables on Both Sides Worksheet Easy"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel